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SUMMARY

The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated
fluid–particle suspension in a spatially modulated channel have been investigated numerically using a
finite volume method. The mathematical model is based on the momentum and continuity equations
for the suspension flow and a constitutive equation accounting for the effects of shear-induced particle
migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship
with a shear-induced migration model of the suspended particles in which the local effective viscosity is
dependent on the local volume fraction of solids. The numerical procedure employs finite volume method
and the formulation is based on diffuse-flux model. Semi-implicit method for pressure linked equations
has been used to solve the resulting governing equations along with appropriate boundary conditions.
The numerical results are validated with the analytical expressions for concentrated suspension flow in a
plane channel. The results demonstrate strong particle migration towards the centre of the channel and
an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a
stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong
accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical
procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that
the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this
phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Solid–fluid suspension flows are important in a wide variety of scientific and engineering applica-
tions including the transport of sediments, chromotography, design and manufacture of composites
and ceramic materials, oil and gas production, sequestration processes in porous media, environ-
mental, physical and biological sciences. In view of its varied applications, a number of theoretical
and experimental investigations have been carried out and these have explored various aspects
of the flow properties and stability characteristics of suspensions. Most of the investigations on
the flow properties of suspensions of spherical particles have focused their attention upon the
development of theoretical or empirical formulae relating the bulk rheology to the volume frac-
tion of particles and/or to the magnitude of the Brownian and colloidal forces, assuming that
the concentration of the particles remains uniform in space. Further, the main focus in most of
the investigations has been to predict the complex rheological effects on a specific suspension.
These predictions are made by using the theoretical descriptions based on experimental evidence.
However, it has been observed that there are a number of mechanisms that exist in the presence
of the flow that leads to non-uniform concentration even in the region away from any walls or
flow boundaries [1]. As a result, the volumetric flow rate for a given pressure gradient exhibits
apparent non-Newtonian behaviour with a viscosity that depends on the local volume fraction of
particles [2]. The transport process at a microstructural level, where the interactions between the
solid particles and the carrier fluid as well as the interactions among the particles themselves play
an important role, strongly influences the global physical properties of suspensions. This shows
that the behaviour of the flowing suspension must be clearly understood for effectively controlling
particle concentrations throughout in a variety of engineering applications such as the polymer
processing industry [3–13].

The most prominent phenomenon observed in solid–fluid suspensions is shear-induced migration,
in which initially well-mixed particles in suspensions subjected to inhomogeneous shear migrate
from regions of high strain rate to regions of low strain rates and assume a non-uniform concen-
tration distribution [13–19]. Shear-induced diffusion or migration has been found to be different
from conventional Brownian diffusion that arises from molecular motion. This phenomenon of
shear-induced migration has important implications both in viscometric measurements of concen-
trated suspensions (particle concentration of 30–60% by volume) and in industrial manufacturing
processes, where the performances and the appearance of the finished products are greatly influ-
enced by the degree of solids dispersivity [20]. This phenomenon also influences the process
of proppant placement within hydraulic fractures that are used in the hydrocarbon extraction
industry [21].

One class of effects leading to non-uniform concentration distributions in simple shear flows
is the so-called ‘lateral migration’ mechanism that produces cross-stream motions of even single
particles. Several mechanisms have been proposed to explain theoretically the lateral migration
mechanism such as inertia, deformation of particle shape and non-Newtonian properties of the
suspending liquid [18, 22]. Another source of lateral migration is due to deformation of particles
as demonstrated in the case of whole blood where the particles underwent strong deformations
in shape and a clear lubricating fluid (plasma) layer developed in a region near the wall in small
vessels. The migration due to non-Newtonian properties of the suspending liquid has been studied
by Karnis and Mason [18]. The result of the occurrence of these effects in a suspension is that
the concentration profiles become non-uniform with a degree of non-uniformity that is flow-rate-
dependent.
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A second class of mechanisms, recognized by Leighton and Acrivos [1], for the evolution
of non-uniform concentration profiles is a consequence of irreversible hydrodynamic interac-
tions between the neighbouring particles. They have used the flow-induced concentration non-
uniformities caused by the particle interactions to explain transient stresses that have been observed
when a concentrated suspension is subjected to a simple Coeutte flow. They have attributed
these transients in the suspension stress to the migration of particles caused by spatial gradients
in the particle interaction frequency and the particle concentration. From these arguments and
simple dimensional analysis, Leightnon and Acrivos [1] have derived diffusive flux expressions
for the particulate phase and have demonstrated that these are consistent with the existence of
a fully developed non-uniform particle concentration distribution for flow within a parallel wall
channel.

Phillips et al. [23] have adapted the scaling arguments of Leighton and Acrivos [1] and have
derived a constitutive equation for the particle flux. The model has considered a balance between
a contribution due to a spatially varying interaction frequency and a contribution due to a spatially
varying viscosity and has yielded excellent predictions in a circular Couette flow. The numerical
simulation of transient circular Couette flow has predicted particle migrations from the rotating
inner cylinder to the stationary outer cylinder. Their results for an axisymmetric Poiseuille flow
show that the particles migrate towards the centreline, leading to a sharply peaked concentration
and a blunt velocity profile in that region.

A number of experimental studies have been carried out to study the effects of viscous resuspen-
sion in a pipe, a channel and Couette flow geometries [2, 14, 24–26]. The results of the experimental
study of the motion of concentrated suspension in a two-dimensional channel flow for monodisperse
systems by Lyon and Leal [26] show that the particle concentration distributions reach a maximum
near the channel centreline and a minimum at the channel walls. Coupled to these concentration
distributions are blunted velocity profiles and particle velocity fluctuation distributions that have a
sharp maximum at a position approximately 0.8H% from the channel axis, where H denotes half
the width of the channel.

A number of theoretical models have also been developed to compute steady-state velocity
and concentration profiles for flows of concentrated suspensions [23, 27–29]. These models basi-
cally fall into two categories, namely, suspension balance model and diffusive flux model, and
they approximate the suspension rheology as a generalized Newtonian fluid with concentration-
dependent viscosity. These models differ, however, in their approach to calculating the particle
concentration distribution.

One approach is to model the suspension as an effective continuum. Suspension balance
models provide a non-local description of suspension behaviour in terms of particle’s velocity
fluctuations and are based on statistical mechanics arguments [27, 29–31]. This approach utilizes
a particulate-phase momentum balance transverse to the direction of flow, along with the
recognition of a particle-phase normal stress that results from particle interactions, to obtain
the equation for the particle concentration profile [27, 29–31]. Although there is no refer-
ence to the fluid in this model, the fluid does govern the nature of the interactions between
particles.

The ‘diffusive flux’ model is based on the scaling arguments proposed by Leighton and Acrivos
[1] for two-body interactions.The motion of particles within the suspension is described through
a diffusion equation based on shear rate and effective viscosity gradients. In this approach, the
suspension is modelled as a single continuum whereby the scaling arguments of Leighton and
Acrivos [1] are used to form the basis of nonlinear constitutive model for the particle concentration
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in a flowing suspension. Particle migration and diffusion are induced by spatially varying inter-
particle interaction frequency and effective viscosity. The shear-induced diffusivity scales linearly
with the local shear rate. This model encounters difficulties in regions where the local shear rate
approaches zero.

This continuum approach has been used for modelling a variety of flow fields and suspensions.
Zhang and Acrivos [32] have considered the viscous resuspension of particles in fully developed
pipe flow using finite element method for a circular cross section of the tube. Fang and Phan-Thien
[33] have considered the numerical modelling of particle migration in concentrated suspension in
a circular Couette flow by finite volume method.

Computer simulation of concentrated fluid–particle suspension flows in axisymmetric geometries
has been performed by Hofer and Perktold [34]. The numerical procedure has employed the
Galerkin finite element method and the numerical results have been validated with the analytical
expression given by Phillips et al. [23] for steady circular tube flow. The numerical results for the
case of flow through a stenosed tube model show that particle concentration is lowest at the site
of maximum constriction, whereas a strong accumulation of particles has been observed in the
recirculation zone downstream of the stenosis.

The experimental and theoretical investigations described above show that concentrated suspen-
sion flows in a channel, a pipe, a stenosed tube or eccentric bearing or a piston-driven flow in a
tube or a channel exhibit the interesting behaviour of the migration of particles. Such a study on
concentrated suspension flow through a wavy channel has not been considered so far.

It is worth mentioning here that the flow through wavy boundaries/periodic, modulated
channel occurs in various physical and biological systems. The interaction between the flow
field and the wavy surface produces significant changes in the transport of mass, momentum
and energy. The flow is often laminar owing to the small dimensions and the low flow velocity.
Wavy channels are currently used for heat transfer augmentation in practical situations. The
applications range from flow in medical devices, compact heat exchangers to microelectronic
equipment packages. For example, when blood oxygenators and bioreactors process very
viscous liquids containing shear-sensitive biomaterials such as animal cells and plant cells, it
is necessary to obtain efficient mixing and excellent heat and mass transfer characteristics. The
wavy channel geometry offers an excellent alternative in these situations [35]. The Newtonian
flow in a wavy channel exhibits separation, reattachment and recirculation, and the shear
rate distribution differs widely from that observed in regular geometries like a plane channel or
an axisymmetric tube [36]. Since flow in complex geometries, such as in modulated channels and
tubes, can represent simple pore geometrical models, several experiments and numerical studies
using different models and solution techniques exist for the prediction of non-Newtonian flow
through complex geometries [37–44]. The interplay between inertial and non-Newtonian effects has
been examined by Abu Ramadan and Khayat [45] for the flow in weakly modulated channels. The
effects of modulation amplitude, wavelength, inertia and non-Newtonian behaviour and their
influence on conditions of flow separation, onset of vortex flow, vortex size and location have
been investigated. The results reveal that non-Newtonian effects have drastic influence and
that shear-thinning leads to separation in the absence of inertia. Further, the results show a
non-monotonic dependence of the vortex size on elasticity and emergence of back flow near
the lower straight wall. It is observed that an increase in the wall amplitude leads to a larger
vortex size and a smaller critical Reynolds number for the onset of back flow at either wall. In
addition, it has been shown that the flow configuration in the converging–diverging nature of
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the periodically modulated channels provides an ideal setting for evaluating constitutive equa-
tions [38, 40, 41, 45–47] and for developing and testing the accuracy and efficiency of numerical
methods in viscoelastic flow calculations [47–49]. Finite difference numerical solutions have
been presented by Chiba et al. [50] for the flow of dilute suspensions of rigid, high aspect-ratio
fibres in Newtonian fluids flowing in an axisymmetric circular 4 to 1 contraction. A continuum
theory developed by Lipscomb et al. [51] that includes the statistical average with respect to
the orientation distribution function of fibres has been used to describe the flow properties of
the suspensions. The numerical results in terms of size and shape of the secondary flow vortex
have been shown to be in agreement with the finite element predictions of Lipscomb et al. [51].
The results show that the presence of fibres drastically changes the tubular entry flow field;
the salient corner vortex grows as the volume fraction and/or aspect ratio of fibres increase.
Further, the vortex length decreases with an increase in the Reynolds number, due to fluid
inertia.

The richness in the physical phenomena exhibited by the Newtonian/non-Newtonian flow
through wavy boundaries suggests that it may be of interest to consider concentrated suspension
flow in a wavy-walled channel to observe the behaviour of particle migration in it, as the migration
of particles depends on the shear rate, which is a function of velocity distribution in the flow field.
Such an investigation, as pointed out earlier, may be relevant for flow through biomedical devices
in which the distribution of the particles in the flow has a considerable bearing on the desired
flow characteristics. Further, the migration of the particles and their accumulation may lead to
irreversible changes in the biofluids leading to severe consequences.

Motivated by the need to have a clear understanding of suspension flows in a wavy channel,
the study of particle migration in concentrated suspension in a wavy channel has been considered.
Although the study of particle migration effects in the flow of suspensions of deformable spheres
in a wavy passage will be more realistic, the present study has considered the flow of suspension
of rigid spheres in a wavy passage. This study is a first step towards better understanding of
particle migration effects in a wavy passage. The behaviour of particle migration in concentrated
suspension flow through a stenosed two-dimensional channel has been investigated. The continuum
diffusive flux model has been incorporated into a finite volume method to model shear-induced
particle migration in non-homogeneous shear flows of suspensions. The model couples a Newtonian
stress/shear rate relationship with a shear-induced migration model of the suspended particles, with
local effective viscosity depending on the local volume fraction of solids. The model describes the
migration of the particles in terms of the second invariant of the generalized shear rate. The choice
of diffusive flux model for the present investigation is based on the closer agreement reported by
Hampton et al. [24]. Further, the success of finite volume method in predicting viscoelastic flow
simulations in complex geometries and particle migration in concentrated suspensions [33, 52, 53]
has given the confidence in the applicability of the finite volume formulation in the present
study.

A general purpose code for generating a semi-staggered grid for plane geometries such as
a plane channel, a stenosed channel and a wavy channel has been developed. Structured non-
orthogonal grids with generalized interpolation procedures as used in finite element method have
been employed. The numerical results have been validated with the analytical expression given by
Phillips et al. [23] for a two-dimensional plane channel. The numerical procedure is then applied
to a stenosed plane channel and a wavy channel, where strong variations of particle concentration
occur.
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2. FORMULATION OF THE PROBLEM

2.1. Governing equations

A suspension of neutrally buoyant spherical solid particles suspended in a Newtonian fluid is
considered. The flow of the concentrated suspension is assumed to be incompressible, laminar and
two dimensional. The two-phase suspension of both the particles and the fluid is modelled as a
single continuum. The continuity and the momentum equations for the two-dimensional suspension
flow are given by

�ui
�xi

=0 (1)

�

(
�ui
�t

+u j
�ui
�x j

)
= ��i j

�x j
(2)

where � is the suspension mass density, ui (i=1,2) are the velocity components in the x(= x1)
and y(= x2) directions, respectively, and �i j is the stress tensor. The constitutive equation for the
total stress is given by the generalized Newtonian relationship

�i j =−P+2�(�)Di j (3)

where P is the pressure, � is the volume fraction of solids in the suspension, �(�) is the effective
viscosity and Di j is the deformation rate tensor given by

Di j = 1

2

(
�ui
�x j

+ �u j

�xi

)
(4)

The variation in suspension viscosity �(�) with particle concentration � is given as a simple
correction to the solvent viscosity so that the effective suspension viscosity �=�r�s, where �s is
the solvent viscosity(assumed constant) and �r is the relative viscosity of the suspension. Empirical
correlations for the relative viscosity have been proposed by several researchers including Krieger
[54] and Leighton and Acrivos [55]. In this study, Krieger’s form for the viscosity function is
considered and it is given by

�r=
�

�s
=

(
1− �

�m

)−1.82

(5)

where �m is the maximum solid volume fraction for which the suspension exhibits fluid behaviour.
The value of �m depends upon the uniformity of particle size, the effective microstructure of the
packed configuration and the type of flow. The maximum packing fraction �m can be interpreted
as the volume fraction of aggregates in closest-packing at which the effective viscosity approaches
infinity. Generally, it is regarded as a variable corresponding to a given collection of particles
under given conditions of flow representing the actual structure of a suspension [56]. In the present
study, the maximum packing fraction is set to a value of 0.68 in the computations by considering
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only rigid monodispersed spherical particles and this is the value proposed by Phillips et al. [23]
in their simulation of circular Coutte flow.

The particle volume fraction is governed by an evolution equation

��

�t
+ui

��

�xi
=−�Ni

�xi
(6)

which represents a balance between stored particles, the convected particle flux and diffusive
particle flux N. The momentum and the concentration Equations (2)–(6) are coupled through
the velocity field and concentration-dependent relative viscosity. Although several mechanisms
including Brownian motion, sedimentation, hydrodynamic particle interactions and gradients in
suspension viscosity contribute to the particle flux, in the present study, the diffusive particle flux
is modelled by neglecting Brownian motion and assuming that sedimentation is not present due
to neutral buoyancy of the particles. The flux of the particles is given by

N=N�+Nc (7)

where N� is the flux contribution due to spatial variation in viscosity, which causes a resistance
to motion after a two-particle collision, and Nc is the flux contribution due to hydrodynamic
particle interactions and it incorporates the effect of particle migration in the direction of decreasing
interaction frequency �̇�. Both spheres are displaced in a direction of lower viscosity relative to
their position in the case of no viscosity gradient. Based on the scaling arguments of Leighton and
Acrivos [55], Phillips et al. [23] have proposed that

Nc=−a2�Kc∇(�̇�) (8)

and

N� =−a2�2�̇K�∇(ln�) (9)

where a is the characteristic length of the particle, �̇ is the local shear rate and Kc and K� are
proportionality constants of order 1, determined experimentally.

Although Equations (8) and (9) predict particle migration in unidirectional shear flows, it is
assumed that the above model also holds in the two-dimensional case. The generalized shear rate
�̇ is taken as

�̇=(2Di j Di j )
1/2 (10)

The model parameters are taken as Kc=0.41 and K� =0.62 in accordance with the optimal
values determined by Phillips et al. [23], based on their analysis of experimental data and numerical
results. The applicability of the model in multidimensional shear flows has been supported by the
investigations of Zhang and Acrivos [32] and Fang and Phan-Thien [33], who have observed a
reasonable agreement between computed and experimental particle concentration in Couette flow
situation. In fact, the theoretically predicted velocity and concentration profiles for flow in a circular
pipe by Zhang and Acrivos [32] have been found to be in very good qualitative agreement with
the experimental results reported by Altobelli et al. [57] where the flow velocities and particle
distributions are measured by employing the technique of nuclear magnetic resonance imaging.
Also, the steady-state solution in circular Couette flow obtained by Fang and Phan-Thien [33] using
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a finite volume formulation with the model described by Equations (8) and (9) is indistinguishable
from the exact solutions to three significant figures (Figures 2 and 3 of Fang and Phan-Thien
[33]). Further, the numerical predictions for the concentration profiles in the radial coordinates for
fully two-dimensional transient flows in an eccentric bearing geometry, where the inner cylinder is
placed offset from the axis of the outer cylinder, are presented along with some experimental data
for a suspension of PMMA particles suspended in a density-matched liquid [33] where the data are
generated by averaging the radial concentration profile with an NMR technique. The agreement is
reasonable (Figures 10 and 11 of Fang and Phan-Thien [33]).

The investigations by Hofer and Perktold [34] on the flow of concentrated fluid–particle suspen-
sion flows in axisymmetric geometries using Galerkin finite element method and a velocity–pressure
projection scheme generally show good agreement with the theoretical predictions (Equations (17)
and (18) of Hofer and Perktold [34]). However, the particle concentration profile at the centreline
has a sharp peak and this is due to the fact that the expression for the particle flux does not account
for collisions in the absence of a gradient in suspension velocity; the effective shear rate �̇ is zero
and the diffusive particle flux in Equations (8) and (9) opposing the migration of particles towards
the centre of the tube vanishes at this site. The authors [34] have suggested the need for a further
refinement of the theory as the measured particle concentration profiles in the flow experiments
of Koh et al. [2] have been considerably smoother in the central region.

2.2. Computational domain

The computational domain for the study under consideration is a domain bounded by two rigid walls
whose shape varies according to the problem under consideration. The fluid–particle suspension
enters through the inlet flows through the two-dimensional domain and leaves through the outlet.
For example, the computational domains for the flow through a stenosed channel and flow through
a wavy passage are presented in Figures 2 and 7, respectively.

2.3. Initial and boundary conditions

The governing equations are subjected to no-slip boundary conditions (u=0) and the no-flux
boundary condition at solid boundaries (n̂·N=0, where n̂ is the normal outward unit vector on the
boundary). At the inlet, the flow velocity and the inlet particle volume fraction are prescribed and
they vary according to the geometry and the flow under consideration. At the outflow section, the
normal components of the gradients of the shear rate and the particle concentration vanish and the
zero flux condition n̂·N=0 is satisfied. It is worth mentioning that the length of the computational
domain (Figures 2, 7) has been chosen appropriately to ensure that the outlet conditions given
above are satisfied. As the problem under consideration is time dependent, initial values of the
flow velocities are specified. In order that the total mass of the solid phase is conserved at all
times, an average volume fraction of particles over the whole domain is specified initially.

2.4. Computational scheme

The governing equations have been expressed in the form of a general transport equation

�
�t

( f g)+ �
�x j

( f u j g)= �
�x j

(
q

�g
�x j

)
+�q (11)
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where g represents either the velocity components or the volume fraction. When f =1,q=0,g=
�,�q =0, the equation of continuity (1) is recovered from Equation (11). When f =�,q=�,g=ui ,
the momentum equation in the i direction (Equation (2)) is obtained and when f =1,g=� and
q=a2(kc�+�2k���/���)�̇, the particle concentration equation (6) is recovered from Equation
(11). The general transport Equation (11) is integrated over a finite volume � with the boundary
surface S and this yields∫

�

�
�t

( f g)d�=
∫
S
f u j gn j dS=

∫
S
q

�g
�n

dS+
∫

�
�q d� (12)

In this investigation, a finite volume method based on the pressure correction procedure devised by
Patankar [58] and others has been employed to solve the governing equations with boundary and
initial conditions numerically. The computational domain is divided into discrete control volumes
using a structural non-orthogonal partially staggered mesh. The conservative form of the equations
is solved for each control volume to obtain a system of algebraic equations. The resulting discretized
equations for the flow variables are solved iteratively by marching in space and time. It is to be
noted that in computing the gradient of any quantity � in a finite volume cell ��, it has been
taken equal to a constant equal to its average value in the cell. This gives

∇�= 1

��

∫
��

∇�= 1

��

∫
�S

�n̂ dS (13)

where �S is the bounding surface of the cell, and n̂ is the outward unit normal vector on �S.
The surface integral is evaluated using the interpolated values of � between adjacent cells sharing

the same boundary. The numerical solution is considered to be converged when the residual for
continuity and pressure defect terms are within 1×10−4, and the residual of the particle flux is
within 1×10−2. The numerical simulations have been performed on a workstation with Pentium-
IV 3GHz processor and 1GB RAM. The code is written in C language using Microsoft Visual
C++ V6.0. For post-processing of results, Microsoft Excel Tecplot V8.0 has been used.

3. VALIDITY ASSESSMENT

The numerical modelling of particle migration in concentrated suspensions by finite volume method
has been considered in some simple two-dimensional geometries.

3.1. Flow between parallel plates

As a first step, the code is being validated for laminar Newtonian flow between parallel plates
for Reynolds numbers of 100 and 500. A uniform velocity has been assumed at the inlet. The
computed and analytical velocity profiles in fully developed regions almost coincide with each
other with a maximum difference of 0.07%.

3.2. Suspension flow in a two-dimensional channel

The investigation for fully developed steady-state flow of concentrated suspension between parallel
plates has been carried out to further validate the code. For Poiseuille flows of concentrated

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1125–1155
DOI: 10.1002/fld



1134 S. MUKHOPADHYAY, R. USHA AND E. G. TULAPURKARA

suspensions (�bulk�0.3), the concentration and velocity profiles reach fully developed forms. The
velocity field develops faster than the concentration, and the entrance length (the length required
for the corresponding variable to become fully developed) depends on the channel half width (H)

and the particle radius (a). From a scaling argument, Leighton and Acrivos [1] have demonstrated
that the entrance length is given by H3/a2. Nott and Brady [31] have obtained the same expression
through dimensional analysis and Stokesian dynamic simulation. NMR experiments by Hampton
et al. [24] have indicated that the entrance length for the velocity field is considerably less than
that for the concentration, which is in turn considerably less than the estimated value H3/a2.
Phan-Thien and Fang [52] have found these entrance lengths to be 0.2H3/a2 and 0.5 H3/a2. The
entrance lengths also depend on the ratio of particle radius to half channel width, that is, 	=a/H .
For the flows under consideration, 	=0.1 has been taken as this corresponds to the upper end of
practical values and gives the minimum entrance length.

For the plane Poiseuille flow of concentrated suspension, the inlet conditions correspond to a
fully developed Newtonian velocity profile with an average velocity of uin=1cm/s and a uniform
concentration at the inlet. This approach has been used in a number of studies [34, 52], as it allows
development of concentration and velocity profiles in a much shorter length of channel. The param-
eters for the study are Re=500,a/H =0.1,2H =0.4cm and L=30cm. The channel length taken
is more than that suggested by Phan-Thien and Fang [52] to allow the development of velocity
and concentration profiles. The mesh used for the numerical computations is of size 300×50. The
steady solutions have been computed as time-asymptotic results of time-dependent solutions in the
numerical procedure. The computations have been carried out for �inlet=0.3, 0.4 and 0.5. Figure 1
shows the computed fully developed particle concentration profiles and the velocity profiles along
with the analytical solution [23, 26]. The numerical results in the channel flow demonstrate strong
particle migration towards the centre of the channel and an increasing blunting of the velocity
profiles with increase in initial particle concentration, which is in close agreement with the analyt-
ical solution. The computed values of � at the centre are 0.645 and 0.667 for �inlet of 0.3 and
0.5, respectively. The analytical result shows �max=0.68 in all three cases. This is in agreement
with the results obtained by Phan-Thien and Fang [52], which shows an underprediction of �
at the centreline as compared with the value of �max at the centreline. The reasons for such an
underprediction can be attributed to the following. Firstly, the difficulty in the numerical compu-
tations, which arises due to viscosity tending to infinity as �→�max, is overcome by arbitrarily
limiting the value of � to �max−0.01. Further, the diffusivity goes to zero at the centreline, and
any disturbance in concentration persists indefinitely. In order to obtain a converged solution, the
dependence of kinematic fluctuations in the volume fraction is damped by an under-relaxation
factor [58].

3.3. Suspension flow in a stenosed channel

A stenosed geometry is obtained by a constriction in a regular geometry like a tube or channel. A
section of computational model and stenosed channel geometry are shown in Figure 2, which is
based on [34].

The inlet height H of the model has been chosen as 0.4 cm and the length of the model as
50 inlet heights. The length of the stenosis region is 4H and the maximum area constriction is
50 or 75%. The flow Reynolds number and the ratio of particle radius to half channel width (at
inlet) have been taken as Re=800 and a/H =0.04. A mesh of size 400×50 has been used and
fully developed particle concentration profile and suspension velocity profile obtained from a flow
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Figure 1. Comparison of analytical and numerical solutions for different values of inlet concentration:
(a) particle concentration and (b) velocity profile. ——, analytical; - - - -, initial; and —∗—, numerical.

Figure 2. Schematic representation of (a) grid in the stenosed channel and
(b) details of the stenosed channel.
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Figure 3. Concentration profiles at different locations along the length in a stenosed channel with 50%
maximum area constriction for �initial=0.4.

with same �inlet in the plane channel model have been imposed as entrance conditions. The other
boundary conditions are the same as those used in the plane channel flow.

Figures 3 and 4 show the particle concentration profiles and velocity profiles at selected lengths
along the stenosed channel model for �initial=0.4 for maximum area constriction of 50%. A fully
developed particle concentration profile is observed at the upstream of the stenosis, whereas at the
stenosis, the area constriction gives rise to high shear rates at the wall leading to a strong migration
of the particles from the wall towards the interior of the channel. The wall concentration decreases
from 0.239 (Figure 3; x/2H =3.5) to 0.176 (Figure 3; x/2H =5a) at this site, a decrease of 26%.
Near the walls, in the region downstream of the stenosis, low velocities are observed and flow
separation is reflected in the corresponding concentration profile. Particle concentration in the zone
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Figure 4. Comparison of velocity profiles at different locations along the length
in a stenosed channel (50% maximum area constriction) for suspension flow with

�initial=0.4 (solid lines) and Newtonian flow (dotted lines).

at the wall reaches a very high value of 0.581 (Figure 3; x/2H =6.25). This phenomenon can be
explained with the very low shear rates in the centre of the recirculation zone, which represents low
collisional frequency. Further downstream the particle concentration profiles gradually transform
to their fully developed shape in the channel flow. The suspension velocity profiles in the stenosed
tube model exhibit higher gradients at the wall and a blunting in the centreline region when
compared with Newtonian flow without particles. The recirculation is also suppressed as compared
with the flow without particles.

Similar profiles are observed in the case of �initial=0.5 (Figure 5) with the concentration values
being more due to a higher value of �initial. At maximum constriction, the concentration decreases
(19% decrease) from 0.3494 (Figure 5; x/2H =3.5) to 0.2843 (Figure 5; x/2H =5) at the wall.
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Figure 5. Concentration profiles at different locations along the length in a stenosed channel with 50%
maximum area constriction for �initial=0.5.

Particle concentration at the wall in the region downstream of the stenosis is 0.651 (Figure 5;
x/2H =6.25), reaching almost up to the maximum packing fraction.

A higher shear rate at the wall for 50% maximum constriction is observed. As the constriction
is decreased (maximum constriction limited to 75% of the channel height; Figure 6) the particle
concentration distribution is similar to that in channel flow as the wall shear rate at the constriction
region is not as high as in 50% maximum constriction. The particle concentration decreases from
0.24 (Figure 6; x/2H =3.5) to 0.2 (Figure 6; x/2H =5) in the case of �initial=0.4, a decrease of
nearly 17%. A minor increase in the concentration at the wall occurs downstream of the stenosis
region. The velocity profiles are blunted as compared with Newtonian flow without particles
(Figure 4). It is worth mentioning that the results for suspension flow through a stenosed two-
dimensional channel agree qualitatively with the particle migration behaviour in the numerical
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Figure 6. Concentration profiles at different locations along the length in a stenosed channel with 75%
maximum area constriction for �initial=0.4.

simulations of concentrated suspension flow through a stenosed axisymmetric tube by Hofer and
Perktold [34].

4. RESULTS AND DISCUSSIONS FOR A FLOW IN A WAVY CHANNEL

4.1. Newtonian model

The geometry considered for investigating the developing flow of Newtonian fluid in a wavy
channel corresponds exactly to that used in the study of Stone and Vanka [36]. The wavy passage
consists of 14 waves with an inlet and an outlet section with lengths each equal to that of one
wavy section. The dimensions of each wavy section of the passage are identical with those used
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in the experiments of Nishimura et al. [59]. The schematic representation of the domain geometry
and grid is shown in Figure 7. This geometry is an appropriate representation of a practical wavy
channel that can be used for applications such as compact heat exchangers or biomedical devices
such as blood oxygenators.

The flow is assumed to be two-dimensional and the Navier–Stokes equations governing the
time-dependent flow have been solved numerically using the code developed for flow in a wavy
passage. The grid size used for the computational domain in the present study is 1024×64 , which
corresponds to 64×64 nodes in each wavy or straight section. The grid size is the same as used
by Stone and Vanka [36] in their numerical study of developing flow and heat transfer in a wavy
passage.

The flow Reynolds number is defined as Re=uinHin/
, where uin and Hin are the velocity and
height at the channel inlet, respectively. The results show that, at low Reynolds number (Re=120),
the flow in the wavy passage is steady, characterized by steady separation bubbles in the top and

Figure 7. Schematic representation of (a) a full flow domain; (b) details of a single wavy
section; and (c) computational mesh.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1125–1155
DOI: 10.1002/fld



NUMERICAL STUDY OF CONCENTRATED FLUID–PARTICLE SUSPENSION FLOW 1141

bottom troughs. However, at a higher Reynolds number (Re=300), the flow becomes unsteady and
periodic oscillations are generated. The computational results (not shown for the sake of brevity)
have been observed to agree qualitatively with those presented by Stone and Vanka [36].

4.2. Concentrated suspension model

The numerical results for concentrated suspension flow in a wavy passage are presented in this
section. The grid size used for computation is the same as that used for Newtonian flow through
a wavy passage. In all the cases, a particle size ratio (a/Hin)=0.1 has been used. The boundary
conditions used are the same as those used for suspension flow in plane channel, namely, uniform
axial flow (with zero cross flow) at the inlet, no-slip at the channel walls and an outflow boundary
condition at the channel exit. The conditions for particle concentration are uniform concentra-
tion at the inlet and vanishing of the normal flux of particles at the walls and channel outlet.
The computations have been started with an initial condition of u=1cm/s and �=�initial every-
where in the computational domain. This resulted in a faster convergence to the final solution
state.

It may be mentioned here that the present study on concentrated suspension flow through a wavy
passage aims at investigating the behaviour of particle migration only. This has been motivated
by the interesting behaviour of particle migration in concentrated suspension flow observed in
different geometries, which include eccentric bearings [33], an axisymmetric pipe and a stenosed
tube [34] and the plane channel [52]. The scope of the present study does not include the analysis
of unsteady behaviour of concentrated suspension flow in a wavy passage. In view of this, the
numerical computations have been performed for two typical values of Reynolds number (Re=120
and 300) and the migration of particles in the wavy passage has been observed. These values have
been chosen to facilitate comparison of the velocity profiles of concentrated suspension flow with
Newtonian flow (analysed in [36]).

The numerical results obtained for velocity and concentration profiles at different x locations in
wave 13 have been presented in Figures 8–11 for different values of Reynolds number (Re=120,
300) and initial concentration values (�initial=0.4,0.5). Figures 12(a) and (b) and 13(a) and (b)
present the corresponding velocity and concentration contours.

It is observed from Figures 12(a) and (b), 8 and 10 that for Re=120 and �initial=0.4, velocity
has a maximum value at the minimum cross section of the geometry, that is, at the entry to a wavy
section. This is due to a sudden reduction in the flow area. As we move further downstream, the
centreline velocity is considerably blunted, as compared with the Newtonian flow velocity profile.
At the site of minimum area of cross section, the shear rate is higher at the wall leading to migration
of the particles from the wall towards the inner section of the geometry. The concentration decreases
from nearly 0.55 (at the centreline) to 0.4 (near the wall) at this site. The region downstream of
the constricted portion is subject to low velocities in the central region as compared with that in
the region of area reduction. Particle concentration increases slightly in this zone as compared
with that in the region of area reduction. Recirculation regions are clearly seen in the velocity and
concentration contour plots (Figure 12), with the particle concentration attaining a high value of
0.6 in a narrow region near the wall. The contour plot for the particle concentration in Figure 12(a)
and the corresponding particle concentration profiles for Re=120, �initial=0.4 (Figure 10) show
that particles migrate out of high shear zones and concentrate in the low shear regions at the
centreline and in a very narrow region near the wall where the channel height begins to increase.
The recirculation region near the wall corresponds to a region of low shear rate, and consequently
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Figure 8. Comparison of axial velocity profiles for Re=120 of Newtonian and suspension flow.

a local high concentration of particles is developed near this region closer to the wall. This is
due to large changes in the viscosity and its gradients as a result of small changes in the particle
concentration.

To gain further insight, the values of pressures in the wavy channel have been deduced from the
computed results. Figure 12(d) presents the pressure contours for the entire channel and Figure 12(e)
presents the details for wave 13 for the case of Re=120 and �=0.4. The corresponding contour
plot for shear rate is presented in Figure 12(c). It may be pointed out that in semi-implicit method
for pressure linked equations algorithm only the relative pressure is computed; the pressure at
the exit of the channel is taken as zero. Figure 12(d) shows the gradual loss of pressure as the
flow passes through the wavy passage. Figure 12(e) shows that pressure is uniform over the cross
sections near the inlet and exit where the flow is attached. In the recirculating flow regimes, there
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Figure 9. Comparison of axial velocity profiles for Re=300 of Newtonian and suspension flow.

is loss of pressure; the velocity and shear rate are low; and there is concentration of particles.
Thus, comparing Figure 12(a), (b), (c) and (d), the following picture emerges. In the regions near
the entry and exit of the wave (i) the pressure is constant across the cross section, (ii) flow is
attached, velocity is high in the central part, (iii) shear rate is low in the central part but high near
the wall and hence (iv) the concentration is high in the central part. In the central part of the wave
(i) there are regions of recirculating flow near the top and bottom, (ii) velocity, shear rate and
pressure are low in the recirculating flow regimes, (iii) the velocity is maximum near the central
part and hence (iv) the concentration is high in recirculating flow regions and near the centre.

It is interesting to note from Figures 13(a) and (b), 8 and 10 that for Re=120, �initial=0.5,
there is no recirculation zone in the troughs of the wave and there is no flow reversal in this region.
This can be attributed to the high particle concentration near and at the wall in the central section
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Figure 10. Concentration profiles of suspension flow for Re=120.

of the wave as compared with particle concentration in this region when �initial=0.4 for the same
Reynolds number. The increase in the initial particle concentration (�initial=0.5) suppresses the
recirculation in the troughs of the wave. In these regions, the particle concentration takes a high
value of 0.574. The results predict increased blunting of the velocity profiles with the increase in
�initial from 0.4 to 0.5. The contour plots of shear rates are shown in Figure 14 and they explain the
particle concentration contours in Figure 13(a). The very low shear rates in the troughs (Figure 14),
which represents a region of low collisional frequency, lead to high particle concentration in
the wave troughs. This phenomenon is also observed in the region closer to the wall where the
channel height increases. Further downstream along the wall, the particle concentration again
increases.

With increase in Reynolds number to Re=300, it is observed from Figures 12(a) and (b), 9
and 11 that the recirculation takes place in the entire region of the troughs of the wave when
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Figure 11. Concentration profiles of suspension flow for Re=300.

�initial=0.4. It is interesting to note that for Re=120 and �initial=0.4, this region is confined to
only upstream section of wave 13 near the walls of the troughs of wave (Figure 12(b)). The higher
concentration of the particles at the wall occurs at an axial location further upstream for Re=300
than for Re=120 when �initial=0.4 (Figure 12(a) and (b)). In addition, particle concentration at
the wall in a small region where the channel height begins to decrease is close to the maximum
packing fraction (Figure 11). This may be attributed to very low shear rate in this zone. The
corresponding velocity profiles are presented in Figure 9 and are compared with the profiles for
Newtonian model.

The contour plots for velocity and particle concentration when Re=300 and �initial=0.5 are
shown in Figure 13. In the region of minimum cross section, the shear rate at the wall is higher when
Re=300 and �initial=0.5 (Figure 14(b)) than when Re=120 and �initial=0.5 (Figure 14(a)). This
results in a strong migration of particles away from the wall towards the centreline of the geometry
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when Re=300 and �initial=0.5 (Figure 13) at the inlet of the wave. The region further downstream
is subjected to low velocities near the centreline region (Figure 9). The very low shear rates in the
recirculation region (Figure 14(b)), which represents a region of low collisional frequency, lead
to high particle concentration (closer to maximum packing fraction) in the wave troughs. This
phenomenon is observed in the region closer to the wall where the channel height increases. A
lower concentration at the wall in the centre of the wave is observed. Further downstream along
the wall, the particle concentration again increases to a value close to maximum packing fraction
(Figure 11). The particle concentration profiles gradually transform to their developing shape in
the region of area reduction as one moves further downstream. The numerical results show that
particles migrate from the regions of high shear zones and concentrate in the low shear zones and
this behaviour is highly influenced by the values of Reynolds number and initial values of particle
concentration.

Figure 12. Contour plots for (a) concentration at �initial=0.4; (b) velocity at �initial=0.4;
(c) shear rate for �initial=0.4; (d) pressure contours for the entire channel �initial=0.4;

and (e) contour plots for pressure �initial=0.4.
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Figure 12. Continued.

It is interesting to observe that the velocity profile for concentrated suspension flow is blunted
as compared with parabolic Newtonian flow as evident from Figures 8 and 9. Further, the blunting
of velocity profile increases with increase in the particle concentration. It is worth mentioning
here that such observations have also been made in the investigations on concentrated suspension
Couette flow between eccentric rotating cylinders by Fang and Phan-Thien [33]. They have also
observed a strong buildup of the particle volume fraction and a small recirculation zone in the
wide gap of the Couette flow device (as observed in the present study for the case Re=300 and
�initial=0.5) at larger eccentricity ratios, leading to a significant change in the kinematics of the
suspension due to the increase in effective viscosity. A similar observation has also been made in
the investigation by Hofer and Perktold [34] for concentrated suspension flow in a stenosed tube.
Their results show that, in the case of a stenosed tube model, particle concentration is lowest at
the site of maximum concentration, whereas a strong accumulation of particles is observed in the
recirculation zone downstream of the stenosis.
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Figure 12. Continued.

5. CONCLUSIONS

The behaviour of concentrated suspensions containing neutrally buoyant spheres in a Newtonian
liquid has been investigated using a finite volume method. A diffusive flux model is solved, which
consists of Newtonian flow with a concentration-dependent viscosity and a diffusion equation for
particle concentration. The diffusive fluxes depend on gradients of the shear rate, concentration
and concentration-dependent viscosity. Thus, the suspension is modelled as a single continuum
with the added effects of a particle concentration distribution.

The numerical computations in two-dimensional geometries such as a plane channel and a
plane stenosed channel show non-uniform particle concentration distribution and blunted velocity
profiles and these features captured by the model are consistent with the results from the diffusive
flux model.
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Figure 12. Continued.

The numerical results for a plane stenosed channel show that

• The particle concentration is lowest on the wall, at the site of maximum constriction as the
area constriction results in high shear rates at the wall, which leads to a strong migration of
particles away from the wall towards the inner section of the geometry.

• A strong accumulation of particles at the wall is observed in the recirculation zone downstream
of the stenosis region because of the very low shear rates in the centre of the recirculation
region.

• Recirculation in the regions downstream of the stenosis is suppressed by the particles. A
blunting of the velocity profiles in the centreline region as compared with Newtonian flow
without particles is observed.

• The maximum constriction percentage controls the behaviour of the particles. At lower
constrictions (75% maximum area constriction), the flow is similar to plane channel flow
and there are no recirculation zones. The particle distribution is similar to that in the plane
channel geometry.
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The finite volume method has been effectively adapted to solve the flow in a wavy passage
involving shear-induced particle migration in concentrated suspensions.

The numerical results show that

• The particles migrate towards regions of low shear rates with low velocities and thus form a
near-stagnant region at these locations.

• The difference in computed particle concentration in the troughs of the wave close to the wall
resulting from particle migration is found to increase at higher values of Reynolds number
and more so with the increase in �initial.• The velocity profile for the concentrated suspension flow is blunted as compared with the
parabolic Newtonian flow.

• A recirculation region is observed in low Reynolds number flow (Re=120) at �initial=0.4.
The volume fraction attains a high value in a narrow region at the wall in the region of
increasing cross section of the wave. For a higher value of �initial (0.5), the recirculation is

Figure 13. Contour plots for (a) concentration at �initial=0.5 and (b) velocity at �initial=0.5.
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Figure 13. Continued.

found to be suppressed and no flow separation is visible. The particles accumulate at the
walls of the troughs and at centreline giving rise to a high particle concentration in these
regions. At higher Reynolds number (Re=300), recirculation regions exist in troughs for all
values of �initial (0.4 and 0.5).

The diffusive flux model incorporated into the finite volume method to investigate concentrated
suspension flow in two-dimensional geometries in the present study describes the migration of
particles within the suspension through a diffusion equation based on shear rate and effective
viscosity gradients. However, this model lacks a complete description of the anisotropy of the
particle interactions. A better model for suspensions should incorporate anisotropy, as it is one of
the important characteristics of suspensions, which account for different amounts of resistance in
flow fields.

A straight extension of the work will involve studying the flow for different parameters deter-
mining the shape of the wavy channel like the amplitude and wavelength.

It is worth mentioning that the present results may contribute to a better understanding of
possible local variations of the particle concentration due to fluid–particle and particle–particle
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Figure 14. Contour plots of shear rate for �=0.5.

interactions in certain applications, although the chosen values of parameters may be far from
matching those in the applications where deformation and aggregation of the particles are essential
factors and the particle size may be considerably smaller.

It is important to point out that issues such as onset of instabilities need to be examined since
it is well established that non-Newtonian effects precipitate the onset of instabilities (experimental
study of Kolodner [60]) and that wall corrugation promotes flow instabilities [61, 62] and these
will be investigated in the future.

It is also of interest to obtain experimental data for the evolution of the particle velocity and
concentration under the flow conditions similar to those considered in this study. The acquisition
of these data is significant, since it would allow quantitative determination of the evolutionary
state of results already present within the research literature and more importantly can be used to
further test the quantitative applicability of the current model.

It is important to note that the present study has considered a suspension of rigid spheres in
which migration effects are due to a phenomenon that is completely different from that which
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occurs in suspensions of deformable spheres (emulsions) and mammalian red blood cells. In view
of this, the model predicts results that are far from reality of the blood circulation. Indeed, human
blood is a concentrated suspension of highly deformable biconcave discs, able to change shape
without significant expenditure of work, provided the membrane is not subject to an increase in
surface area. Such deformations result in inward migration of red cells from the wall of tubes, as
is found in emulsions of deformable drops. Moreover, at low shear rates, such as would prevail
in certain areas of recirculation flow in sudden expansions of vessel diameter, red cells in plasma
aggregate into so-called ‘rouleaux’. Further, blunting of the velocity distribution occurs in the flow
of human blood, but the effect is marked only at relatively low wall shear stress; as the shear stress
increases and the deformation of the red cells increases, the blunting decreases until, at very high,
flow and shear stress, the blunting disappears.

In view of the above, it is important to consider suspensions of deformable spheres and study
the effects of particle migration in wavy passages and this forms a part of future investigation.
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